27 for the different olefins, and more quantitative Stern-Volmer data

- (41) J. L. Occolowitz and G. L. White, Aust. J. Chem., 21, 997 (1967).
- (42) S. Farid, J. C. Doty, and J. L. R. Williams, J. Chem. Soc., Chem. Commun., 711 (1972).
- (43) Cf. R. A. Caldwell and S. P. James, J. Amer. Chem. Soc., 91, 5184 (1969); I. E. Kochevar and P. J. Wagner, ibid., 94, 3859 (1972); A. A.
- Gorman, R. L. Leyland, M. A. J. Rodgers, and P. G. Smith, *Tetrahedron Lett.*, 5085 (1973).
- (44) trans-2-Heptene is the only one of the three olefins which does not completely quench the triplet derived dimer (IIb). See also ref 8.
- (45) D. R. Coulson and N. C. Yang, J. Amer. Chem. Soc., 88, 4511 (1966).
- (46) D. R. Arnold, R. L. Hinman, and A. H. Glick, *Tetrahedron Lett.*, 1425

A Total Synthesis of *dl*-Camptothecin

Cyril S. F. Tang, Cary J. Morrow, and Henry Rapoport*

Contribution from the Department of Chemistry, University of California, Berkeley, California 94720. Received July 5, 1974

Abstract: dl- Camptothecin has been synthesized in 15% overall yield from isocinchomeronic acid. The synthetic design incorporates three rearrangements: rearrangement of a nipecotic acid to an α -methylenelactam, selenium dioxide oxidation of an olefin to an allylic alcohol and acid catalyzed rearrangement of the latter, and Claisen rearrangement involving an allylic alcohol-orthoester system. Thus, isocinchomeronic acid was converted to 1-acetoxy-6-methylene-5-oxooctahydroindolizine via 1-oxooctahydroindolizine-6-carboxylic acid in 62% yield. Allylic oxidation-rearrangement led to 1-hydroxy-6-hydroxy-methyl-5-oxo- Δ^6 -hexahydroindolizine (43%), and the α -butyrate side chain was then introduced by Claisen rearrangement with trimethyl orthobutyrate. The 1-hydroxyl was oxidized to keto and condensed with N- (2-aminobenzylidene)-p-toluidine to give the tetrahydroindolizino[1,2-b]quinoline. Selenium dioxide in acid gave both allylic oxidation-rearrangement and aromatization to the pyridone. Acid catalyzed lactonization and α -hydroxylation (O_2 -CuCl₂-DMF) of the lactone completed the synthesis.

Camptothecin (1) is a novel alkaloid originally isolated from Camptotheca acuminata (Nyssaceae)¹ and more recently from Mappia foetida Miers (Olacaceae).² Its structural elucidation was accomplished in 1968³ and with the initial report of its potent antileukemic and antitumor activity,⁴ many attempts were made to synthesize camptothecin, culminating in a number of successful total syntheses.⁵

Our approach to the synthesis of camptothecin, a preliminary account of which has appeared, ie was based fundamentally on the bicyclic ketoacid 1-oxooctahydroindolizine-6-carboxylic acid (3), which was obtained as the hydrochloride in 85% yield from an inexpensive, commercially available starting diacid, isocinchomeronic acid (2). The choice

of the bicyclic ketoacid was made with the knowledge that the characteristic 2-pyridone D ring of camptothecin (1) can be introduced by a simple rearrangement of a nipecotic acid to an α -methylenelactam. The resulting 3-methylene2-piperidone, after appropriate substitution, can subsequently be oxidized to a pyridone.

From bicyclic ketoacid 3 the overall synthesis consists of three phases: (i) α -methylenelactam rearrangement of a nipecotic acid, (ii) introduction of the quinoline AB rings via the Friedländer condensation, and (iii) oxidation of the α -methylenelactam to an allylic alcohol followed by introduc-

tion of the butyrate residue at the 4-position of the piperidone D ring, oxidation, and lactonization. As Scheme I shows, the sequence need not be in this order for the synthesis was designed to allow maximum flexibility before converging on camptothecin.

Scheme I. Convergent Routes for Camptothecin Synthesis from 3

Preparation of bicyclic ketoacid 3 from isochinchomeronic acid (2) was begun by hydrogenation of 2 in aqueous ammonia using 5% rhodium on alumina catalyst following a

procedure developed for the hydrogenation of nicotinic acid.⁷ The piperidine-2,5-dicarboxylic acid (4) formed was converted to the corresponding diethyl ester 5⁸ in 84% over-

RO₂C
$$C_2H_3O_2C$$
 N $CO_2C_2H_3$ $CO_2C_2H_3$ $CO_2C_2H_3$ $CO_2C_2H_3$ $CO_2C_2C_2$ CO_2C_2 CO_2C_2 CO_2C_2 CO_2 CO_2

all yield from **2**. Conversion of diethyl piperidine-2,5-dicarboxylate (**5**) to ethyl 3-(2,5-diethoxycarbonylpiperidino)propionate (**6**) was accomplished by treatment with ethyl 3-bromopropionate in the presence of anhydrous sodium acetate. This modification of the reported procedure⁹ provided **6** in 80% yield after distillation.

The preparation of bicyclic ketoacid 3 from triester 6 was conducted in toluene with potassium tert-butoxide followed by careful hydrolysis and decarboxylation, providing a quantitative yield of 3 (as the hydrochloride). When the four steps, viz, hydrogenation, esterification, alkylation, and cyclization, were carried through with purification only of the final product, the overall yield, $2 (\rightarrow 4 \rightarrow 5 \rightarrow 6) \rightarrow$ 3, was 85%. Dieckmann cyclization of triester 6 can be envisaged in three modes, that is to form (i) an azabicyclo-[2.2.1]heptanone, (ii) azabicyclo-[3.3.1]nonanone, and (iii) an oxoindolizine. The latter is the most favorable direction for ring closure, and the product was exclusively the oxoindolizine 3 as established by its properties and subsequent reactions.

Initially our aim was to incorporate the quinoline AB ring system into the molecule as early as possible before attempting E ring annelation (path a, Scheme I). To examine this approach, bicyclic ketoacid 3 as its sodium salt was dissolved in ethanol-water and condensed with o-aminobenzaldehyde in the presence of potassium hydroxide. After esterification, two products were recovered and these were shown to be the two possible diastereomeric esters of structure 7, designating the lower melting one (121-122°) as 7a

and the higher melting one (168-171°) as 7b. The ratio of 7a to 7b was 2:1 after separation and 1:1 at formation by nmr analysis, and the overall yield of 7 (a + b) reached 52%.

The next step in synthetic path a (Scheme I) required conversion of the tetracyclic carboxylic acid 8 to the α -methylenelactam, 9. Since the ethyl ester 7 was so readily obtained from the Friedländer quinoline synthesis, the possibility of direct rearrangement of 7 to 9 was examined in a model system. Ethyl N-methylnipecotate (10) was treated under a wide variety of conditions in an attempt to effect rearrangement to 1-methyl-3-methylene-2-piperidone (11), but no rearranged product 11 was detected. Although re-

fluxing the methyl ester analog of 10 has been reported 10 to give 11, when 10 was refluxed for 10 hr, only traces of 11 could be detected. An analogous attempt to rearrange 7b to 9 in refluxing toluene gave only partial conversion to the other isomer, 7a. We also found that, in addition to N-methylnipecotic acid (12), both the sodium salt and the hydrochloride can be rearranged to 11 in refluxing acetic anhydride. Rearrangement of the sodium salt is reasonably fast, but the reaction is limited by the low solubility of the salt in refluxing acetic anhydride.

Therefore, ester 7 was converted to the potassium salt of 8 using ethanolic potassium hydroxide, and refluxing this salt in acetic anhydride containing 100 mol % of acetic acid provided 9 in 60% yield. Duplication of these results with salts prepared individually from 7a and 7b gave identical yields and showed that separation of the two isomers was unnecessary. Also, the potassium salt of 8 could be induced to crystallize directly from an ethanolic solution of the crude product mixture obtained in the Friedländer synthesis, thus precluding the necessity for purification by way of 7.

The rearrangement reactions always yielded a second product in \sim 8% yield along with 9. This product showed strong fluorescence under uv light suggesting that it contained the camptothecin chromophore. Using uv, nmr, and mass spectral data, it was assigned structure 13. Partial

conversion of 9 to 13 also could be achieved by refluxing 9 in p-cymene in the presence of palladium-on-charcoal catalyst

Continuation of the synthetic sequence requires eventual carbon-carbon bond formation at C-15¹¹ adjacent to the exocyclic methylene. As this position is allylic, selenium dioxide oxidation could lead to a ketone such as 14. Not surprisingly the alternative fully aromatic systems 15, 16, and 17 were formed depending on whether ethanol or acetic acid was used as the solvent. A 60:40 ratio of 16:17 formed in quantitative yield when the reaction was performed in glacial acetic acid, and acetate 16 could be hydrolyzed to alcohol 17 or alcohol 17 could be easily acetylated.

Since aromatization to the pyridone (16, 17) had occurred in quantitative yield, rather than oxidation to ketone 14, we examined the chemistry of 16 and 17 as alternate intermediates upon which ring E might be formed. Two routes were considered: intramolecular Michael addition of a carbanion at C-15 in the acetate 16 and Claisen rearrangement of an enol ether of alcohol 17.

In an attempt to effect Michael addition of the α -carbanion from the acetate group in 16 at C-15 in the D ring, 16 was treated with lithium diisopropylamide, resulting in an intense blue solution. The color dissipated as the solution warmed to room temperature; upon acidification, the only product recovered was alcohol 17. Repetition of the reaction and quenching of the blue solution with deuterium methoxide then deuterium oxide gave a yellow solid whose nmr spectrum was identical with that of 17, except that the absorption assigned to the two protons of the methylene bridge of ring C had vanished. Acetylation gave an acetate with nmr spectrum identical with that of 16; however, the single absorption assigned to the methylene bridge protons

and the methylene protons of the acetoxymethyl group now showed only two-proton intensity rather than four as in 16 itself. The presence of two deuterium atoms in the product was confirmed by mass spectral analysis. These data establish that the methylene protons in ring C are sufficiently acidic so that their exchange with deuterium can be catalyzed by methoxide ion. Therefore, anionic reactions in the presence of these highly acidic protons did not appear to offer much hope of success, and this approach was abandoned. These observations may in part explain the poor yields others have obtained in numerous attempts 5b,d,f,g to ethylate deethyldeoxycamptothecin at C-20.

Scheme II

The possibility of forming the final carbon-carbon bond via the Claisen rearrangement requires preparation of an enol ether 18 of the hydroxyl group in 17 (Scheme II). Under appropriate conditions, 18 should undergo the Claisen rearrangement to give an exocyclic methylene product such as 19 which then would tautomerize to 20.

Prior to attempting such a reaction on 17, it was examined using the model system 3-hydroxymethyl-1-methyl-2-pyridone (21). Treatment of 21 with either triethyl orthoacetate or triethyl orthobutyrate resulted in a net 1,3-rearrangement to give esters 22. With 21 and the diethylacetal of N,N-dimethylacetamide¹³ or N,N-dimethylbutyramide, the desired 3,3-rearrangement occurred to give amides of structure 23. Along with amide 23b was also formed the dimethylamide analog of ester 22b. This product could be minimized by use of an acid catalyst and lower reaction temperatures. 12

This experience was transferred to tetracyclic alcohol 17. Treatment with 300 mol % of N,N-dimethylbutyramide diethylacetal in o-dichlorobenzene with propionic acid catalysis gave 50% yield of the desired amide 24. Side products formed in the reaction included small amounts of 25 and about 10% of a new type of product from the amide acetal rearrangements, the ester 26, an analog of 22b from the monocyclic system. The intermediate ketene acetal (cf. 18, $X = OC_2H_5$) from which 26 arises must result from elimination of dimethylamine rather than ethanol.

Assuming that the entropy effects in forming the sixmembered lactone of ring E would facilitate displacement of dimethylamine from the amide, the last major step in the synthesis of deoxycamptothecin 27 (which is readily oxidized to camptothecin) is oxidation of the 14-methyl in 24 to an intermediate such as 28 in which the methyl group is functionalized. There is little precedent for any type of oxidative reaction at the 3-position of 3-methyl-2-pyridones. A single report¹⁴ states that 1,3-dimethyl-2-pyridone (29) was converted to 3-bromomethyl-1-methyl-2-pyridone (30) upon treatment with N-bromosuccinimide (NBS). However, every attempt at duplication of this result in our hands has led to 5-bromo-1,3-dimethyl-2-pyridone (31). 15 In

other model studies, functionalizing the 3-methyl group of 1,3-dimethyl-2-pyridone with a variety of oxidizing systems reported¹⁶⁻¹⁹ to oxidize benzylic positions was examined; all failed.

Attempts were made to functionalize the 8-methyl group in 24. Treatment with selenium dioxide in glacial acetic acid gave no reaction at the 8-methyl group, but oxidation did occur elsewhere in the molecule. Reaction of 24 with 200 mol % of NBS in carbon tetrachloride gave a product in which the nmr absorption due to the 8-methyl group was lost, but the absorption assigned to the methylene bridge (C-11) protons also was gone. When the reaction was repeated with a single equivalent of NBS, a different product was formed in which the 8-methyl absorption was gone, but again at least part of the absorption due to the C-11 methylene bridge also was lost.

As studies²⁰ directed to the synthesis of camptothecin analogs indicated the presence of the fully aromatic ABD ring system was the source of the difficulties in this approach to

introduction of ring E by Claisen rearrangement, we modified the design so that aromatization to the pyridone in ring D occurred late in the synthesis. The ease with which the D ring aromatized when attached to the quinoline mojety dictated that A,B ring incorporation also should be postponed to a much later stage. Ideally, the shortest route to the important intermediate keto methylenelactam 42 as originally conceived was to rearrange the ketoacid 3 directly in refluxing acetic anhydride as in path b, Scheme I. Both the ketoacid 3 and its sodium or potassium salt were obtained by addition of 1 equiv and 2 equiv of sodium or potassium hydroxide, respectively, to the hydrochloride of 3. Each was subjected to the refluxing acetic anhydride conditions, and the course of any rearrangement to the α -methylenelactam was followed by nmr. No vinyl protons typical of α -methylenelactams at δ 5.3 and 6.2 were observed in either case; only resinous material was isolated.

The instability of ketoacid 3 to acetic anhydride rearrangement conditions necessitated a protecting procedure for the ketonic function (path c, Scheme I). Ketals were first considered for this blocking function, and, when ketoacid 3 was dissolved in absolute ethanol, saturated with HCl, and stirred at room temperature, differences in the intensities of the ketonic and ester carbonyl absorptions in the ir showed that an equilibrium mixture (1:4) was always established. Twenty per cent of the mixture had lost the keto absorption and was ketal 34 and/or enol ether 35, and 80% was ketoester 33. The same result was obtained starting

3.
$$X. Y = O; R = H$$
33. $X. Y = O; R = C_2H_0$
34. $X = Y = OC_2H_0; R = C_2H_0$
35. $X. Y = OC_2H_0; R = C_2H_0$
36. $X. Y = OC_2H_0; R = C_2H_0$
37. $X. Y = OC_2H_0; R = C_2H_0$
38. $X = Y = SC_2H_0; R = C_2H_0$
39. $X. Y = OC_2H_0; R = C_2H_0$
31. $X = H; Y = OH; R = H$
32. $X = H; Y = OH; R = C_2H_0$
33. $X. Y = OC_2H_0; R = C_2H_0$
34. $X = H; Y = OH; R = C_2H_0$
35. $X = C_2H_0$
36. $X. Y = OC_2C_2H_0$
37. $X. Y = OC_2C_2H_0$
38. $X = Y = SC_2H_0; R = C_2H_0$
39. $X. Y = OC_2H_0; R = C_2H_0$
30. $X = H; Y = OH; R = C_2H_0$
31. $X = C_2H_0; R =$

with ketoester 33; therefore attention was turned to the ethylene ketals. Treatment of a mixture of ketone, boron trifluoride etherate and ethylene glycol at room temperature gave mostly unchanged starting material, while refluxing the mixture of 33 and 34–35 with ethylene glycol and p-toluenesulfonic acid gave a poor yield of ketal ester 37. Alkaline hydrolysis of 37 and subjection of the product to acetic anhydride rearrangement conditions gave α -methylenelactam in 20% yield, the major component being polar resinous material.

Thioketals have been used extensively as a protecting group for ketones due to their stability under both alkaline and acidic conditions, but this characteristic also creates difficulties in regenerating the carbonyl function. The added stability seemed essential in the present case, however, so the feasibility of preparing and rearranging the diethyl thioketal 38 and the dithiolane 39 was investigated. Both of these thioketals were formed in 78-80% yield by treating ketoester 33 with excess of the respective thiol in the presence of boron trifluoride etherate.²¹

Diethyl thioketal ester 38 was hydrolyzed with ethanolic potassium hydroxide, and the crude salt of 38 was rearranged in refluxing acetic anhydride. This process gave a 53% yield of α -methylenelactam 40. Similarly, the dithiolane ester 39 gave a 60% yield of α -methylenelactam 41. The cause of the low overall yields from ester to rearranged α -methylenelactam appeared to be incomplete ester hydrolysis, and we attempted to improve it by (a) increasing the amount of alkali, (b) increasing the water content of the solvent, and (c) turning to acid-catalyzed hydrolysis. All variations led to decreased yields of α -methylenelactam.

To circumvent this difficulty, we attempted to avoid the esterification step from acid 3 to ester 33 and to ketalize the ketoacid directly. Ketoacid 3 was treated with excess ethanedithiol in acetic acid, required for solubility, and boron trifluoride. After acetic anhydride rearrangement, a 36% yield of α -methylenelactam 41 was obtained. This yield was competitive with the previous method via ester hydrolysis, based on their common starting material, the hydrochloride of 3.

Having obtained the thicketal α -methylenelactams 40 and 41, the next step was a practical regeneration of the ketone function. The commonly used Hg11 salt method22 failed to give any ketone from thioketal methylenelactam 41. However, treatment of thicketal 40 with mercuric chloride-cadmium carbonate gave a variable 30-40% yield of ketone 42. Treatment of thioketal 41 with N-chlorosuccinimide (NCS) and silver nitrate²³ gave only 40% of the desired ketone 42. A series of reactions of varying duration under these conditions showed NCS slowly attacked the double bond of the α -methylenelactam, as was evident from the loss of the characteristic vinyl proton absorptions in the nmr. Chloramine T^{22,24} also failed to regenerate the ketone. Dethioketalization via alkylation to form a sulfonium salt followed by hydrolysis to regenerate the ketone^{25,26} was then applied. Dithioketal 41 was methylated with dimethoxycarbonium tetrafluoroborate²⁷ in methylene chloride and the sulfonium salt was hydrolyzed with water. This procedure furnished the desired ketone 42 in 80% yield. Despite this improvement in thioketal cleavage, the synthesis of keto methylenelactam 42 from ketoacid 3 was still unsatisfactory in terms of overall yield (30%).

As an alternative, ketoacid 3 was first reduced to the hydroxy acid 43 which after α -methylenelactam rearrangement could be reoxidized to ketone 42. Reduction of 3 was accomplished with sodium borohydride, and the resulting hydroxy acid 43 was converted to ethyl ester 44 in 80% yield. Hydroxy ester 44 was then hydrolyzed with ethanolic potassium hydroxide and the resulting potassium salt of 43 was rearranged in refluxing acetic anhydride to yield 74% of acetoxy α -methylenelactam 45. Alternatively, after sodium borohydride reduction of 3, the crude product was passed through a cation exchange column to give an 87% yield of 43. Subjecting 43 to the rearrangement conditions gave the acetoxy α -methylenelactam 45 in 84% yield, the overall yield from isocinchomeronic acid 2 being 62%.

At this point the option arose of using the versatile intermediate 45 to converge with path b and subsequently with path a or of carrying it further along path c, as shown in

Scheme I. Following the former route, the acetoxy α -methylenelactam 45 was converted to the hydroxy α -methylenelactam 46 by potassium carbonate in methanol to give a quantitative yield of 46. It was now essential to oxidize hydroxy methylenelactam 46 to the ketone 42. Oxidation with Jones' reagent²⁸ under a variety of conditions gave at best 40% yield of ketone 42. Attempted oxidation using the chromium trioxide-pyridine complex²⁹ gave mostly unchanged material (60%) and nonketonic products; lead tetraacetate³⁰ in pyridine gave no reaction, and the alcohol also proved resistant to ruthenium tetroxide.³¹

A more selective oxidizing agent, which has been used effectively on hindered secondary alcohols, is the dimethyl sulfoxide (DMSO)-acetic anhydride (Ac₂O) mixture. When 46 was stirred in the mixture of DMSO-Ac₂O at room temperature, the alcohol completely reacted in 6 hr, and ketone 42 was isolated in 57% yield. The remaining 43% was accounted for when 84% of it was recovered as the acetate 45. This method was potentially a practical one, since acetate 45 could be easily hydrolyzed back to the alcohol 46. However, using the variation³³ of dicyclohexylcarbodimide (DCC) in anhydrous DMSO with a catalytic amount of orthophosphoric acid, the ketone α -methylene lactam 42 was obtained directly in 85% yield.

Having obtained ketone 42, it was now possible to merge with path a, Scheme I, by incorporating the quinoline AB rings. The Friedländer quinoline synthesis is widely used to construct such a system³⁴ and provided easy access to the indolizino[1,2-b]quinoline ring system of the camptothecin skeleton. The condensation to be considered was between ketone 42 and o-aminobenzaldehyde (47) or its imine with p-toluidine, 48. Two problems are apparent when considering this condensation: one is the ease with which o-aminobenzaldehyde self-condenses³⁵ and the other is the potential self-condensation of ketone 42 in the presence of base.

Initially the condensation was attempted under amine catalysis. In the presence of triethylamine at temperatures up to 120° no reaction occurred; tetramethylguanidine gave mostly polymer and only a small amount of 9. Alkoxide and hydroxide have been used extensively in the Friedländer condensation with variable results. Investigation of alcoholic potassium hydroxide as the condensing agent under a large variety of conditions gave a maximum yield of 33% of α -methylenelactam 9.

Turning to the recently reported³⁶ acid-catalyzed Friedländer condensation using N-(o-aminobenzylidene)-p-toluidine (48) and removing the water formed by continuous distillation with toluene, a 76% yield of tetracyclic α -methylenelactam 9 was isolated. A small amount of a highly fluorescent compound with a chromophore at 370 nm was also obtained and was identified as the aromatic side product 13.

The alternative elaboration of camptothecin from keto methylenelactam 42 via path b, Scheme I, or from acetoxy methylenelactam 45 via path c is based upon introduction of the butyric acid residue necessary for lactonization using the Claisen rearrangement, prior to quinoline ring formation. To pursue this route required conversion of 45 to the allylic acetate 49 by allylic oxidation-rearrangement, and we sought to accomplish this using the standard selenium dioxide reagent in acetic acid.20 Repeated efforts under a variety of conditions led to a maximum 58% yield of 49. Analysis of the course of the reaction established that 45 was oxidatively consumed after 10 min; however, rearrangement was proceeding much more slowly and at this point the product was a mixture of secondary alcohol and acetate, 50 and 51. In view of this observation, the oxidation was stopped after 10 min and the intermediate, freed of selenium dioxide and selenium, was subjected to rearrangement in acetic anhydride-sulfuric acid to give a 69% yield of 49. The allylic alcohol 52 was obtained quantitatively from diacetate 49 in anhydrous methanol-potassium carbonate at room temperature, making the overall yield 43% from isocinchomeronic acid (2) to diol 52.

Claisen rearrangement of 52 in excess trimethyl orthobutyrate with a catalytic amount of propionic acid at 145° provided a 75% combined yield of a mixture containing butyrate 53 and alcohol 54. Incorporation of the butyrate side chain was evident from the appearance of a triplet at δ 0.9 and reappearance of the absorption due to the vinyl protons of the α -methylene moiety at δ 5.3 and 6.2. Hydrolysis of this crude mixture using potassium carbonate in methanol at room temperature removed the esterifying butyrate group and gave a quantitative yield of alcohol 54 as a mixture of stereoisomers. The isomeric mixture was unmistakably present, as its nmr showed singlets at δ 3.4, 3.6, and 3.7, corresponding to the methyl ester, and sets of triplets around δ 0.9, corresponding to the methyl group of the butyrate side chain. Oxidation of alcohol 54 to ketone 55 was accomplished in 76% yield using the DCC-DMSO-H₃PO₄ method previously employed for oxidation of 46 to 42. This ketone 55 was then incorporated into the quinoline ring in 79% yield through Friedländer condensation with N-(2-aminobenzylidene)-p-toluidine (48) to give the tetrahydroindolizino[1,2-b]quinoline 56.

The remaining tasks were (a) aromatization of ring D, (b) closure of the lactone ring E, and (c) introduction of the α -hydroxy group. Aromatization and formation of the necessary primary alcohol were accomplished in a single step by selenium dioxide oxidation of the α -methylenelactam 56 in glacial acetic acid. Progress of the reaction was followed by disappearance of the characteristic uv absorption of 56, giving way to absorption of the α -acetoxymethylpyridone 57 at λ_{max} 370, 290, and 253 nm. Also the nmr spectrum of

57 showed loss of the α -methylene vinyl protons and concurrent appearance of absorptions due to acetoxymethyl protons and the C-5 protons at δ 5.35 and 5.2, respectively. It is interesting to note that the α -methylenelactam 54 has four asymmetric centers. The presence of many isomers was reflected in its nmr spectrum, which showed overlapping sets of triplets at δ 0.9 integrating for a total of three protons corresponding to the C-18 methyl group, and three distinct singlets at δ 3.4, 3.6 and 3.7, integrating together for

three protons, corresponding to the methyl ester protons of the α -butyrate side chain. The number of asymmetric centers was reduced to three in ketone 55 and tetracyclic α -methylenelactam 56, and the isomeric mixture of these intermediates finally converged to pyridone 57 which possesses only one asymmetric center at C-20. This was reflected in the collapse of the overlapping triplets and multiple singlets to a single triplet at δ 1.0 and one singlet at δ 3.7. The acetate 57 could be isolated prior to hydrolysis and lactonization to deoxycamptothecin (27). However, the one-step hydrolysis-lactonization process could be carried out more efficiently on the crude reaction product 57, which was treated with 2 N sulfuric acid-glyme at 50°, simultaneously effecting lactonization to give deoxycamptothecin (27) in 79% yield from α -methylenelactam 56.

Final oxidation of deoxycamptothecin (27) to *dl*-camptothecin (1) was accomplished by passing oxygen into a dimethylformamide (DMF) solution of 27 containing a trace of 25% aqueous dimethylamine and cupric chloride.^{5d} When freshly prepared anhydrous cupric chloride was used, essentially quantitative oxidation of 27 to 1 was achieved in 5 hr. *dl*-Camptothecin (1), having uv, nmr, and high-resolution mass spectrum identical with the natural product,³⁷ was isolated in an overall yield from isocinchomeronic acid (2) of 15%.

Experimental Section³⁸

Diethyl Piperidine-2,5-dicarboxylate $(5)^{7.8}$ was prepared by hydrogenating 1 mol (167 g) of isocinchomeronic acid, dissolved in 1 l. of water and 200 ml of concentrated ammonium hydroxide, over 40 g of 5% rhodium on alumina at 2 atm of hydrogen. Hydrogen uptake ceased after 24 hr and the crude product was esterified using the ethanol-benzene- H_2SO_4 system and 3A molecular sieves in a Soxhlet cup. Addition of solid NaHCO₃, concentration, addition of water, adjustment of the pH to 8.5, extraction with benzene, and distillation of the dried extracts provided the diester 5 in 84% yield as a cis-trans mixture: bp 85-94° (0.3 Torr) (lit.8 bp 95-98° (0.2 Torr)); gc, 171°; R_T 5.7 and 6.1 min; mass spec m/e 230 (M + 1), 229, 184, 156, 110, 82, 56, 55.

Ethyl β-(2,5-Diethoxycarbonyl-1-piperidino)propionate (6). A mixture of 12.3 g (54 mmol) of diethyl piperidine-2,5-dicarboxylate (5), 11.8 g (65 mmol) of ethyl β-bromopropionate, and 8.2 g (100 mmol) of anhydrous sodium acetate was stirred under nitrogen at 70-75° for 7 hr, after which it was cooled and poured into 130 ml of water and 28 g of sodium carbonate. The alkaline solution was extracted with three portions of ether, and the combined extracts were washed with saturated brine, dried, filtered, and concentrated to a residual oil (16.5 g) which was distilled to give 14.2 g (80% yield) of triester 6: bp 124-126° (0.02 Torr); gc, 180°; R_T 11.3 min; nmr (CCl₄) δ 4.13 (q, J = 7 Hz) and 4.06 (2 q, J = 7 Hz, 6 H together), 3.45 (t, J = 4.5 Hz, 1 H), 1.47-3.27 (m, 11 H), 1.27 (t, J = 7 Hz) and 1.23 (2 t, J = 7 Hz, 9 H together); mass spec m/e 330 (M + 1), 329 (M), 300, 284, 256, 242, 238, 184, 182, 168, 156.

1-Oxooctahydroindolizine-6-carboxylic Acid (3) Hydrochloride. To a solution of 60 ml of dry tert-butyl alcohol in 500 ml of dry toluene was added 11.0 g (0.28 mol) of potassium metal and the mixture refluxed under nitrogen until all of the potassium had reacted. The mixture was then cooled to 0°, 60.0 g (0.18 mol) of the triester 6 in 100 ml of dry toluene was added dropwise over 1 hr, the solution was stirred at 0° for 3 hr, 600 ml of 6 N HCl was added, and the two-phase mixture was refluxed overnight. The aqueous phase was then removed and concentrated at 40°, leaving a gummy residue which was digested with 500 ml of isopropyl alcohol and filtered to remove the potassium chloride. Isopropyl alcohol was removed <35° to give 3·HCl as a fluffy glass in quantitative yield.

Ethyl 1-Oxooctahydroindolizine-6-carboxylate (33). A solution of 10.9 g (50 mmol) of ketoacid 3 hydrochloride in 300 ml of absolute ethanol was cooled to 0° , hydrogen chloride gas was bubbled in until saturation, and the acidic solution was allowed to sit at room temperature for 24 hr. After most of the ethanol was evaporated, 100 ml of methylene chloride was added followed by cold

saturated sodium carbonate solution to pH 9. The aqueous phase was further extracted with CH_2Cl_2 , and the extracts were dried, filtered, and distilled to give 8.5 g (80%) of ketoester 33: bp 114-116° (0.7 Torr); glc, 170°; R_T 7 min; ir 1725, 1750 cm⁻¹; nmr (CCl₄) δ 1.3 (t, 3 H), 1.8-3.0 (m, 10 H), 3.1-3.7 (m, 2 H), 4.0 (q, 2 H).

8-Ethoxycarbonyl-5b,6,7,8,9,11-hexahydroindolizino[1,2-b]quinoline (7). To 4.38 g (20 mmol) of 3 hydrochloride was added 100 ml of 0.2 N ethanolic potassium hydroxide. The precipitated potassium chloride was removed, the filtrate was concentrated to 30 ml, and this solution was placed in a dropping funnel attached to a flask containing 2.46 g (20 mmol) of o-aminobenzaldehyde³⁵ in 20 ml of 95% ethanol which was heated to reflux just prior to the addition of 9 ml of 4.5 N potassium hydroxide followed by dropwise addition of the solution in the dropping funnel during 0.5 hr at reflux. Reflux was continued for 1.5 hr followed by standing overnight. The ethanol was removed at 50°, 50 ml of water was added, and the alkaline aqueous solution was extracted with ether to give 408 mg (3.4 mmol) of unreacted o-aminobenzaldehyde. The aqueous phase was lyophilized and to the gummy residue was added 200 ml of absolute ethanol, 100 ml of benzene, and 5.0 ml of sulfuric acid in 30 ml of absolute ethanol. As distillation of the azeotrope proceeded, the distillate was replaced by solution of 5.0 ml of sulfuric acid in 220 ml of absolute ethanol and 75 ml of benzene. When the reaction solution had been reduced to 350 ml, a Soxhlet extractor containing 3A molecular sieves was attached, and reflux was continued overnight, followed by removal of solvent and addition of 300 ml of saturated sodium bicarbonate solution. The aqueous phase was adjusted to pH 8 and extracted with six 50-ml portions of CH2Cl2. The combined extracts were washed with saturated bicarbonate solution, dried, filtered, and evaporated to give 5.2 g of residue, which was dissolved in benzene and applied to a 150-g column of silica gel. Elution with 1:1 hexane-ethyl acetate gave partial separation of the isomeric esters 7a and 7b in a total yield of 3.06 g, 52%. Each tetracyclic ester was recrystallized from heptane-benzene solution.

7a: mp 121–122° dec; nmr δ 7.38–8.23 (m, 5 H), 4.16 (q, J=7 Hz) and 4.15 (s, 3 H together), 1.13–3.90 (m) including 1.28 (t, J=7 Hz, 13.5 H together); uv 318 nm (ϵ 5680), 310 (3810), 304 (4550), 298 (3520), 292 (3620), 274 (3770), 235 (31,700), 232 (34,700), 207 (46,500); mass spec m/e 296 (M), 295, 267, 251, 223, 195, 182, 168, 111.5, 111, 110.5, 110, 109.5; high resolution mass spec m/e 296.1525 (calcd for $C_{18}H_{20}N_2O_2$, 296.1525).

7b: mp 168-171° dec; nmr δ 7.23-8.12 (m, 5 H), 4.13 (q, J=7 Hz) and 4.06 (s, 3 H together), 1.07-3.82 (m) including 1.23 (t, J=7 Hz, 13 H together); uv 317 nm (ϵ 5660), 311 (3950), 304 (4440), 298 (3260), 292 (3260), 275 (3260), 234 (23,700), 231 (24,400), 207 (34,800); mass spec m/e 296 (M), 295, 267, 251, 223, 195, 182, 168, 111.5, 111, 110.5, 110; high resolution mass spec m/e 296.1528 (calcd for $C_{18}H_{20}H_{2}O_{2}$, 296.1525).

5b,6,7,8,9,11-Hexahydroindolizino[1,2-b jquinoline-8-carboxylic Acid (8), Potassium Salt. A. The tetracyclic ester 7 (1.19 g, 4 mmol) and 20 ml of 0.2 N ethanolic potassium hydroxide were heated at reflux for 4.5 hr after which the ethanol was removed to give 1.27 g (quantitative yield) of the potassium salt of 8: uv 317 nm (ϵ 7100), 310, 304 (5600), 297 (4200), 291 (4200), 266, 234, 231, 207.

B. Condensation between 32 g (145 mmol) of ketoacid 3 hydrochloride and 18.2 g (150 mmol) of o-aminobenzaldehyde was carried out as above through the initial addition at reflux for 1 hr followed by 3 hr of further reflux. The solvent was then removed, and the residue was stirred with ether to remove unreacted o-aminobenzaldehyde, then redissolved in ethanol. Evaporative removal of ethanol at 50° was continued until crystals appeared, and this was followed by cooling and filtering. Repetition of this process gave a combined yield of 16.5 g (37%) of crystalline 8 potassium salt, identical vith the product prepared by method A.

8-Methylene-9-oxo-5b,6,7,11-tetrahydroindolizino[1,2-b]quino-line (9). A. From Tetracyclic Acid 8. Potassium hexahydroindolizino[1,2-b]quinoline-8-carboxylate (8, 1.10 g, 3.6 mmol), 210 mg (3.6 mmol) of acetic acid, and 15 ml of acetic anhydride were heated at reflux for 1.25 hr. The solution was cooled and filtered and the filtrate was concentrated to a residue to which 50 ml of 10% aqueous sodium carbonate was added. Extraction with three portions of CH₂Cl₂, and washing, drying, and evaporating the combined extracts left a residue which was applied to a column of

100 g of silica gel. Elution with 1:1 ether:chloroform gave 540 mg (60% yield) of the tetracyclic methylenelactam **9:** mp 137-139°; tlc on silica gel (3:1 chloroform:acetone) $R_F = 0.45$ (1:1 ether: chloroform) $R_F = 0.26$; nmr δ 7.3-8.2 (m, 5 H), 6.36 (finely split s, 1 H), 4.4-5.5 (m) including 5.44 (finely split s, 4 H total), 2.6-3.1 (m, 2 H), 1.1-2.2 (m, 2 H); ir 3030, 1640, 1622, 1604, 1439, 1401, 1310 cm⁻¹; uv 319, 312, 306, 299, 293, 235, 207 nm; mass spec m/e 250 (M) 221, 181, 168.

Further elution of the column from the above experiment with 1:19 acetone:chloroform provided 71 mg of 8-methyl-9-oxo-11H-indolizino[1,2-b]quinoline (13): mp 255-260°; nmr δ 7.4-8.4 (m, 7 H), 5.26 (s, 2 H), 2.32 (s, 3 H); uv 365, 291, 253, 247, 217 nm; high resolution mass spec m/e 248.0946 (calcd for $C_{16}H_{12}N_2O$, 248.0950).

B. From Ketomethylenelactam 42. A solution of 187 mg (1.5 mmol) of o-aminobenzaldehyde (47) in 5 ml of absolute ethanol was heated to reflux and 0.3 ml of 4 N KOH in absolute ethanol was then added, followed by the dropwise addition, over 1 hr, of 100 mg (0.6 mmol) of ketomethylenelactam 42 in 40 ml of absolute ethanol. After 24 hr of reflux, the absorbance at 319 nm ceased to increase, the ethanol was evaporated, and the residue was chromatographed to give 50 mg of the tetracyclic α -methylenelactam 9 (33% yield), mp 137-139°.

Alternatively, 129 mg (0.6 mmol) of N- (2-aminobenzylidene)-p- toluidine, 36 100 mg (0.6 mmol) of ketomethylenelactam **42** and 5 mg of p- toluenesulfonic acid in 15 ml of toluene were heated under reflux with azeotropic removal of water. After 3 hr, the solution was cooled, the toluene was evaporated, and the residue was dissolved in chloroform. Addition of ethyl ether precipitated 8 mg of a solid, which was removed, and the filtrate was evaporated. Chromatography of the residue on silica gel with 10% chloroformether gave 115 mg (76%) of the tetracyclic α -methylenelactam 9 and less than 5 mg of 13.

8-Ethoxymethyl-9-oxo-11*H*-indolizino[1,2-*b*]quinoline (15). 8-Methylene-9-oxotetrahydroindolizino[1,2-*b*]quinoline (9, 100 mg, 0.4 mmol), 4 ml of 95% ethanol, and 67 mg (0.6 mmol) of selenium dioxide were heated at reflux for 4.5 hr. After filtration, the solvent was evaporated to give 85 mg of a solid residue which was partitioned between CH_2Cl_2 and saturated sodium bicarbonate solution, the aqueous phase being extracted with three additional portions of CH_2Cl_2 . The combined organic phase was washed, dried, and evaporated leaving 34 mg (29% yield) of the ethoxy derivative 15: mp 210-215°; nmr δ 7.0-8.4 (m, 7 H), 5.17 (s, 2 H), 4.59 (s, 2 H), 3.68 (q, J = 7 Hz, 2 H), 1.31 (t, J = 7 Hz 3 H); ir 3065, 1665, 1600, 1200 cm⁻¹; uv 365, 291, 253, 247, 217 nm; mass spec m/e 293 (M + 1), 264, 263, 248, 219, 205, 131.5.

8-Acetoxymethyl-9-oxo-11*H*-indolizino[1,2-*b*]quinoline (16). 8-Methylene-9-oxotetrahydroindolizino[1,2-*b*] quinoline (9, 500 mg, 2 mmol), 24 ml of glacial acetic acid, and 333 mg (3 mmol) of selenium dioxide were heated at 75° for 2 hr. The acetic acid was removed at 50° (1 Torr), and the residue was applied to a 30-g column of silica gel. Elution with 5% acetone-chloroform gave 356 mg in fractions 6–12, which was recrystallized from benzene-hexane, 59% yield: mp 214–215° dec; nmr δ 7.1–8.4 (m, 7 H), 5.20 (broadened s, 4 H), 2.15 (s, 3 H); ir (KBr) 2980, 1722, 1650, 1613, 1597, 1494, 1321, 1247, 1020 cm⁻¹; uv 362, 288, 254, 248, 217 nm; mass spec *m/e* 306 (M), 263, 248.

8-Hydroxymethyl-9-oxo-11*H***-indolizino[1,2-***b***]quinoline** (17). Further elution of the column from which 16 was obtained, using 5% methanol-chloroform provided an additional 210 mg of solid which was recrystallized from hexane-benzene, 40% yield: mp 223-224° dec; the combined yield of 16 and 17 is 99%. 17: nmr (CDCl₃-CD₃OD) δ 7.2-8.6 (m, 7 H), 5.27 (s, 2 H), 4.72 (s, 2 H); ir (KBr) 3410, 2941, 1656, 1606, 1591, 1578, 1410, 1205, 1067; uv 364, 290, 253, 248, 217 nm; mass spec m/e 264 (M), 248, 235.

The initial reaction product mixture of 16 and 17, resulting from the reaction of 9 with CH₃CO₂H-SeO₂, could be converted quantitatively to acetoxy derivative 16 by treatment with acetic anhydride-pyridine on the steam bath for 10 min. Alternatively, the mixture or acetoxy compound 16 were converted quantitatively to alcohol 17 by standing overnight in concentrated hydrochloric acid.

8-Hydroxymethyl-9-oxo-11H-indolizino[1,2-b]quinoline-11- d_2 and Its Acetate. To 0.45 ml (0.32 mmol) of diisopropylamine in 5 ml of tetrahydrofuran (THF), cooled to -75° , was added 0.20 ml of 1.6 N n- butyllithium in hexane. An immediate blue color ap-

peared in the reaction mixture upon dropwise addition of acetate 16 (65 mg, 0.2 mmol in 5 ml of THF). Stirring at -75° for 0.5 hr was followed by addition of 18 mg (0.5 mmol) of methanol- d_4 in 1 ml of THF, and after warming to -40° an additional 0.1 ml of methanol- d_4 was added followed by 0.2 ml of deuterium oxide to give a green solution. Decolorization was completed by addition of 3.5 ml of 0.1 N hydrochloric acid. All the liquid was evaporated and the residue examined by nmr. The spectrum was identical with that of 17 except that the absorption at 5.27 ppm for the methylene protons at C-11 was lacking. The residue was treated with 0.5 ml of dry pyridine and 0.5 ml of acetic anhydride and heated on the steam bath for 5 min. Excess reagents were removed and the residue was chromatographed as above to give 8 mg of $16-11-d_2$: nmr δ 7.2-8.5 (m, 7 H), 5.25 (s, 2 H), 2.17 (s, 3 H); mass spec m/e 308 (M), 307 (40% of 308), 265, 250, 175, 149.

N, N-Dimethyl-2-[8-methyl-9-oxo-7(11H)-indolizino-[1,2-b]quinolyl]butyramide (24). To 8-hydroxymethyl-9-oxo-11Hindolizino[1,2-b]quinoline (17, 264 mg, 1 mmol), 4 ml of o-dichlorobenzene, and 6 μ l (8 mol %) of propionic acid was added a solution of 1.33 g of a mixture of dimethylbutryamide diethyl acetal¹³ and its ethanol elimination product. The mixture was stirred at room temperature for 45 min, heated at 150° for 23 hr, and applied to a column of 25 g of silica gel. Elution with hexane removed the o-dichlorobenzene, chloroform removed the excess butyramide acetal and ester 26 which is characterized below, and 400 ml of 95:5:1 chloroform:acetone:95% ethanol followed by 400 ml of 90: 10:2 chloroform:acetone:95% ethanol gave 270 mg of the butyramide 24, 75% yield, mp 208-210° after recrystallization from hexane-benzene: nmr δ 7.27-8.44 (m, 5 H), 5.25 (s, 2 H), 3.92 (t, J =7 Hz, 1 H), 3.00 (s) and 2.94 (s, 6 H together), 2.38 (s, 3 H), 1.4-2.3 (m, 2 H), 0.98 (t, J = 7 Hz, 3 H); mass spec m/e 362, 361 (M), 316, 288, 259, 247, 219, 218, 205, 169, 149.

Ethyl 3-[9-Oxo-8(11*H*)-indolizino[1,2-*b*]quinolyl]-2-ethylpropanoate (26). Treatment with hexane of the residues from chloroform elution of the column described in the previous experiment provided a 10% yield of a product which was recrystallized from hexanebenzene: mp 183-184°; nmr δ 7.05-8.33 (m, 7 H), 5.16 (s, 2 H), 4.04 (q, J = 7 Hz, 2 H), 2.90 (finely split s, 2 H+), 1.40-2.40 (m) including 1.62 (finely split q, J = 7 Hz, 2 H+ total), 1.17 (t, J = 7 Hz) and 0.97 (t, J = 7 Hz, 6 H together); mass spec m/e 362 (M) 347, 333, 317, 300, 289, 288, 287, 273, 259, 248, 247.

Ethyl 1,1-(1,3-Dithiolane)octahydroindolizine-6-carboxylate (39) and Ethyl 1,1-Bis(ethylthio)octahydroindolizine-6-carboxylate (38). To a solution of 7.8 g (37 mmol) of ketoester 33 in 32 ml of ethanedithiol cooled in an ice bath, was added over a period of 15 min, 32 ml of distilled boron trifluoride etherate. The ice bath was then removed, the mixture was allowed to stand at room temperature for 24 hr, saturated sodium carbonate solution was added, and the alkaline aqueous phase was extracted with CH_2Cl_2 . The combined organic phase was washed, dried, filtered, and evaporated, finally at 90° for 15 hr. Chromatography of the residue on silica gel gave 8.3 g (78% yield) of ethylenedithioketal ester 39 as an oil: ir 1725 cm⁻¹; nmr δ 1.25 (2 sets of t, 3 H), 1.6–3.7 (m, with two singlets at 3.19, 3.2, 16 H), 3.98, 4.0 (2 sets q, 2 H).

Similarly, bisethylthioketal ester 38 was obtained as an oil from thioethanol in 80% yield: ir 1725 cm⁻¹; nmr (CCl₄) δ 1.25 (2 sets of t, 9 H), 1.6-3.4 (m, 16 H), 4.0 (q, 2 H).

1,1-(1,3-Dithiolane)-6-methylene-5-oxooctahydroindolizine (41) and 1,1-Bis(ethylthio)-6-methylene-5-oxooctahydroindolizine (40). To a solution of 6.0 g (20.9 mmol) of ethylenedithioketal ester 39 in 150 ml of ethanol was added 2.34 g (41.8 mmol) of potassium hydroxide. The solution was heated at reflux for 5 hr, the ethanol was evaporated, finally at 80° for 6 hr, and the residue was boiled with 150 ml of acetic anhydride for 2.5 hr. Evaporation of the acetic anhydride, digestion of the residue with chloroform and filtration, and evaporation of the chloroform left a residue which was chromatographed on silica gel, eluting with chloroform, to give 3 g (60% yield) of α -methylenelactam ethylenedithioketal 41: mp 126–128°; ir 1601, 1650 cm⁻¹; nmr δ 1.9–2.8 (m, 6 H), 3.3 (s, 4 H), 3.4–3.9 (m, 3 H), 5.3 (split s, 1 H), 6.25 (split s, 1 H).

Similarly, α -methylenelactam bisethylthioketal **40** was obtained from its ester **38** in 53% yield as an oil: ir 1601, 1650 cm⁻¹; nmr (CCl₄) δ 1.25 (t, 6 H), 1.8-2.9 (m, 10 H), 3.4-3.9 (m, 3 H), 5.2 (split s, 1 H), 6.05 (split s, 1 H).

6-Methylene-1,5-dioxooctahydroindolizine 42. 1. Mercuric Chloride-Cadmium Carbonate Cleavage²² of Bisethylthioketal 40.

To a solution of 11.25 g (41.5 mmol) of bisethylthioketal **40** in 400 ml of acetone, 200 ml of benzene, and 20 ml of water was added 14.3 g (83 mmol) of CdCO₃ and 225 g (83 mmol) of HgCl₂. The mixture was stirred vigorously at room temperature overnight then was filtered, and the filtrate was evaporated to dryness. Chromatography of the residue on silica gel with 20% chloroform-benzene gave a 40% yield of ketone **42**, which was recrystallized from chloroform-hexane: mp 68-72°; ir 1601, 1650, 1750 cm⁻¹; nmr (CCl₄) δ 1.1-2.9 (m, 6 H), 3.15-3.9 (m, 2 H), 4.2-4.6 (m, 1 H), 5.3 (split s, 1 H), 6.1 (split s, 1 H).

2. N-Chlorosuccinimide-Silver Nitrate Cleavage²³ of Ethylenedithioketal 41. A solution of 0.14 g (0.58 mmol) of ethylenedithioketal lactam 41 in 2 ml of acetonitrile was added to a well-stirred solution of 0.31 g (2.3 mmol) of NCS and 0.44 g (2.6 mmol) of AgNO₃ in 25 ml of 80% aqueous acetonitrile at room temperature.

The mixture was stirred for 15 min, saturated sodium sulfite was added followed by saturated Na₂CO₃ and NaCl solutions, the mixture was filtered through celite, and the celite was washed thoroughly with CH₂Cl₂. The aqueous phase of the filtrate was extracted exhaustively with CH₂Cl₂, the combined CH₂Cl₂ layers were dried, filtered, and evaporated, and the residue was chromatographed on silica gel to give a 40% yield of the ketone 42.

3. Dimethoxycarbonium Tetrafluoroborate Cleavage^{25,26} of Ethylenedithioketal 41. A solution of 650 mg (2.7 mmol) of thioketal 41 in 15 ml of CH₂Cl₂ was added to 972 mg (6.0 mmol) of dimethoxycarbonium tetrafluoroborate²⁷ in 3 ml of CH₂Cl₂ at room temperature with stirring. After 1 hr the CH₂Cl₂ was decanted from an oil which formed, the oil was digested with CH₂Cl₂, which was also decanted, and water was added to dissolve the oil. Continuous extraction of the aqueous solution with CH₂Cl₂ for 24 hr and evaporation of the CH₂Cl₂ gave 356 mg (80% yield) of ketone 42.

1-Acetoxy-6-methylene-5-oxooctahydroindolizine (45). 1. From Ethyl 1-Hydroxyoctahydroindolizine-6-carboxylate (44). A solution of 2.19 g (10 mmol) of ketoacid 3 hydrochloride in 50 ml of water was titrated with 20% sodium hydroxide solution to pH 9. The solution was diluted with 60 ml of methanol and cooled in an ice bath, a solution of 1.5 g (40 mmol) of sodium borohydride in 10 ml of water was added dropwise over a 5 min period, and stirring was continued at 0° for 15 hr. Concentrated hydrochloric acid then was added to pH 2 and, after 0.5 hr, the solvent was evaporated, the residue was dissolved in 50 ml of absolute ethanol, and the resulting solution was cooled and saturated with HCl gas. After isolation similar to that described for ketoester 33 and chromatography on silica gel, 1.7 g (80% yield) of the hydroxy ester 44 was obtained as an oil: ir 1720, 3450 cm⁻¹; nmr δ 1.2 (t, 3 H), 1.5–3.3 (m, 12 H), 4.1 (q over m, 3 H).

To a solution of 1.66 g (7.8 mmol) of hydroxy ester **44** in 50 ml of ethanol was added 1.03 g (15.6 mmol) of potassium hydroxide followed by water until the suspension cleared, the solution was heated to reflux for 3 hr, and the ethanol then was evaporated. Acetic anhydride was added to the residue and the mixture was heated at reflux for 1.5 hr. Isolation was carried out as described for the α -methylenelactam thioketals **40** and **41**. Chromatography on silica gel with chloroform gave 1.2 g (74% yield) of the α -methylenelactam acetate **45** as an oily mixture of isomers: ir 1601, 1650, 1730 cm⁻¹; nmr (CCl₄) δ 1.3–2.7 (m with s at 2.03, 9 H), 3.3–3.9 (m. 3 H), 4.7 (q, 0.5 H, one isomer), 5.2 (m, 1.5 H, the other isomer), 6.1 (split s, 1 H). Three crystallizations from methylene chloride-hexane gave a single diastereomer, mp 85–86°.

2. From 1-Hydroxyoctahydroindolizine-6-carboxylic Acid (43). A solution of 12 g (55 mmol) of ketoacid 3 hydrochloride in 27 ml of water and 330 ml of methanol was adjusted to pH 8.5 with 10% aqueous sodium hydroxide, and to the solution at 0° was added 1.55 g of sodium borohydride in 55 ml of water dropwise over 0.5 hr. The solution was stirred at 0° for 20 hr, concentrated HCl was added until pH 2, the solution was concentrated to one-fourth volume, and it was applied to a cation exchange column (AG-50W-X8, hydrogen form), eluting with 1 N ammonium hydroxide until a negative ninhydrin test was obtained. Evaporation of the aqueous ammonium hydroxide gave 8.86 g (87% yield) of the hydroxyamino acid 43 which was very hygroscopic.

A solution of 7.98 g (43.2 mmol) of the hydroxy acid 43 in 200 ml of acetic anhydride was heated at reflux for 2.5 hr. The solution was evaporated to dryness and the residue chromatographed on silica gel, eluting with chloroform to give 7.6 g (84% yield) of α -methylenelactam acetate 45, identical with that described above.

1-Hydroxy-6-methylene-5-oxooctahydroindolizine (46). To a solution of 1.2 g of α -methylenelactam acetate 45 in 25 ml of 95% ethanol was added 200 mol % of potassium hydroxide and the solution was stirred at room temperature overnight. The ethanol was evaporated, chloroform was added, and the mixture was stirred for 0.5 hr after which it was filtered and the precipitate washed with chloroform. The filtrate and washings were evaporated, and the residue was recrystallized from chloroform-hexane to give a 95% yield of hydroxymethylenelactam 46: mp 106-112°; ir 1601, 1650, 3350 cm⁻¹; nmr δ 1.7-2.15 (m, 4 H), 2.4-2.7 (m, 2 H), 3.3-4.3 (m, 5 H), 5.2 (split s, 1 H), 6.1 (split s, 1 H).

6-Methylene-1,5-dioxooctahydroindolizine (42). By Oxidation of Alcohol 46 Using Dicyclohexylcarbodiimide (DCC)-Dimethyl Sulfoxide (DMSO)-Phosphoric Acid. To a solution of 2.4 g (14.3 mmol) of alcohol 46 and 8.9 g (43.2 mmol) of freshly sublimed DCC in 120 ml of DMSO was added 480 mg of orthophosphoric acid. The mixture was stirred for 7 hr and filtered, and the precipitate was washed with carbon tetrachloride. Evaporation of the solvent left a residue which was chromatographed on silica gel, eluting with chloroform, to give 2 g (85% yield) of the keto α -methylenelactam 42, identical with that prepared earlier by thioketal cleavage.

1-Acetoxy-6-acetoxymethyl-5-oxo- Δ^6 -hexahydroindolizine (49). α -Methylenelactam (45) (400 mg, 1.9 mmol) in 8 ml of acetic acid and 213 mg of selenium dioxide were heated at 100° for 15 min, the mixture was cooled to 50° and filtered through filter aid, and the acetic acid was evaporated at <50°. The residue was dissolved in CH₂Cl₂ and filtered again, and the filtrate was evaporated to give 560 mg of residue, which was dissolved in 12 ml of acetic acid and 8 ml of acetic anhydride. To this was added 2 drops of concentrated sulfuric acid, the solution was heated at 140° for 30 min and then concentrated, and the residue was chromatographed on silica gel, eluting with 1% methanol-chloroform to give 348 mg (69% yield) of allylic acetate 49 as an oil: nmr δ 2.05 (s, 6 H), 1.9-2.65 (m, 4 H), 3.6 (m, 3 H), 4.75 (broad s, 2 H), 4.9 (q, 0.5 H) and 5.4 (q, 0.5 H), 6.5 (broad t, 1 H).

1-Hydroxy-6-hydroxymethyl-5-oxo- Δ^6 -hexahydroindolizine (52). To a solution of 3.11 g (11.6 mmol) of diacetate 49 in 60 ml of absolute methanol was added 805 mg of anhydrous potassium carbonate. The mixture was stirred at room temperature for 0.5 hr and filtered, and the filtrate was evaporated to give a quantitative yield of the isomer mixture of diol 52: high resolution mass spec m/e 183.0898 (calcd for $C_9H_{13}NO_3$, 183.0895). Repeated crystalization from methylene chloride gave one pure isomer, mp 168–169°.

Methyl 2-(1-Hydroxy-6-methylene-5-oxo-7-octahydroindolizinyl)butyrate (54). Diol 52 (1.51 g, 8.25 mmol), 6.95 g (57.7 mmol) of trimethyl orthobutyrate, and 27 µl of propionic acid were heated at 145° for 3 hr, removing methanol by distillation during the period. Excess trimethyl orthobutyrate was then evaporated, and to the cooled residue was added CH₂Cl₂ and 50 ml of 1 N HCl. The CH₂Cl₂ phase was washed with water, dried, filtered, and evaporated to give 1.99 g of diester 53 and alcohol 54 as a mixture of isomers (75% yield). The mixture of 53 and 54, dissolved in 15 ml of absolute methanol to which 840 mg of anhydrous K2CO3 was added, was stirred at room temperature for 1 hr and filtered. Evaporation of the filtrate gave a quantitative yield of hydroxy ester 54 as a mixture of isomers: mp 93-103°; nmr δ 0.9 (overlapping sets of t, 3 H), singlets at 3.4, 3.6, 3.7 (isomers, COOCH₃), 4.2 (broad s, 1 H), split singlets at 5.2, 5.45, 6.1, 6.3 (isomers corresponding to $C=CH_2$).

Methyl 2-(6-Methylene-1,5-dioxo-7-octahydroindolizinyl)buty-rate (55). Hydroxy α-methylenelactam (54) (554 mg, 2.1 mmol), 1.35 g (6.56 mmol) of DCC in 18.3 ml of DMSO, and 73 mg of orthophosphoric acid were stirred at room temperature for 30 hr, then the resulting precipitate was removed and washed with CH₂Cl₂. The combined filtrate and washings were evaporated, the residue was digested with CCl₄ and filtered, and the filtrate was evaporated. Chromatography of the residue gave 415 mg (76% yield) of ketoester 55 as an oily mixture of isomers: ir (CCl₄) 1601, 1650, 1725, 1750 cm⁻¹; nmr δ 0.9 (overlapping sets of t, 3 H), singlets at 3.6 and 3.7 and multiplets at 3.5-4.8 (total 6 H), split singlets at 5.1, 5.2, 6.0, 6.2 (C=CH₂), isomers.

Methyl 2-[8-Methylene-9-oxo-7(11H)-indolizino[1,2-b]quinolinyl]butyrate (56). A solution of 255 mg (0.96 mmol) of ketoester 55, 261 mg (1.24 mmol) of N-(o-aminobenzylidene)-p-toluidine

(48), and 8.3 mg of p-toluenesulfonic acid in 25 ml of toluene was heated at reflux for 3 hr with azeotropic distillation of water. The toluene was removed under vacuum and the residue was chromatographed to give 266 mg (79% yield) of the tetracyclic α-methylenelactam 56 as a mixture of isomers: mp 132-138° dec; uv 319, 312, 306, 298, 288, 234 nm; nmr δ 0.9 (overlapping sets of t, 3 H), 1.5-2.4 (m, 3 H), 2.55-3.4 (m, 3 H), 3.55, 3.6, 3.75, 3.85 (all s, 3 H, isomers), 4.4-5.5 (m, 4 H), 6.3, 6.45 (2 split s, 1 H, isomers), 7.4-8.1 (m, 5 H).

Methyl 2-[8-Acetoxymethyl-9-oxo-7(11H)-indolizino[1,2-b]qui**nolinyllbutyrate** (57). α -Methylenelactam 56 (388 mg, 1.11 mmol) and 122 mg of selenium dioxide in 15 ml of acetic acid were heated at 80° for 2.5 hr followed by filtration and evaporation of the filtrate. A 10% aliquot was purified by chromatography (SiO₂), eluting with chloroform to give the pyridone acetate 57 while the remaining crude was carried on to deoxycamptothecin. For 57 from chloroform-hexane: mp 171-178° dec; uv 370, 290, 253 nm; nmr δ 1.0 (t, 3 H), 2.05, 2.1 (s and m, respectively, 5 H), 3.7 (s, 3 H), 3.9 (t, 1 H), 5.2 (s, 2 H), 5.35 (s, 2 H), 7.35 (s, 1 H), 7.5-8.3 (m, 5

Deoxycamptothecin (27). The crude oxidation product above, dissolved in 14 ml of dimethoxyethane (DME) and 27 ml of 2 N sulfuric acid, was heated at 50° for 7 hr. The DME was evaporated, and the residual aqueous layer was cooled to 0°, adjusted to pH 7.1 with saturated sodium bicarbonate solution, and extracted with chloroform. Evaporation of the dried chloroform gave crude deoxycamptothecin (27) which was chromatographed on silica gel, eluting with chloroform to give 262 mg (79% yield) of deoxycamptothecin (27): mp 262-264° dec (lit. 5b,f mp 258-264°); uv 370, 290, 253 nm; nmr δ 1.05 (t, 3 H), 2.1 (m, 2 H), 3.6 (t, 1 H), 5.25 (broad s, 2 H), 5.45 (broad s, 2 H), 7.1 (s, 1 H), 7.6-8.35 (m, 5 H); high resolution mass spec m/e 332.1161 (calcd for $C_{20}H_{16}N_2O_3$, 332.1161).

dl-Camptothecin (1). Following the suggested procedure,5d oxygen was bubbled (via a dispersion tube) through a solution of 300 mg of deoxycamptothecin (27) in 100 ml of dry DMF containing 500 mg of freshly prepared anhydrous CuCl₂ and 1 ml of 25% aqueous dimethylamine at room temperature. Monitoring by tlc (4% methanol in chloroform) indicated the disappearance of starting material after 5 hr, after which water was added, the pH was adjusted to 6.5 with dilute hydrochloric acid, and the mixture was extracted with methylene chloride. Evaporation of the dried methylene chloride left 310 mg (99% yield) of crystalline dl-camptothecin (1), mp 276-278° (lit. mp 275-277°, 5b 276-278°5f), identical with natural material³⁷ in its uv, nmr, and high resolution mass spectrum.

References and Notes

- M. E. Wall, M. C. Wani, C. E. Cook, K. H. Palmer, A. T. McPhail, and G. A. Sim, *J. Amer. Chem. Soc.*, 88, 3888 (1966).
 T. R. Govindachari and N. Viswanathan, *Phytochemistry*, 11, 3529
- (1972)
- (3) A. T. McPhail and G. A. Sim, *J. Chem. Soc.*, 923 (1968).
 (4) *Chem. Eng. News*, **48**, (16), 14 (1970); R. C. Gallo, J. Whang-Peng, and R. H. Adamson, *J. Nat. Cancer Inst.*, **46**, 789 (1971). However, recent information on camptothecin indicates that the compound is toxic and inactive against carcinoma of the gastrointestinal tract and malignant melanoma: C. G. Moertel, A. J. Schutt, R. J. Reitmeir, and R. G. Hahn, Cancer Chemother. Rep., 56, 95 (1972); J. A. Gottlieb and J. K. Luce, ibid., 56, 103 (1972).
- (5) (a) G. Stork and A. G. Schultz, J. Amer. Chem. Soc., 93, 4074 (1971);

- (b) R. Volkmann, S. Danishefsky, J. Eggler, and D. M. Solomon, *Ibid.*, **93**, 5576 (1971); (c) M. C. Wani, H. F. Campbell, G. A. Brine, J. A. Kepler, M. E. Wall, and S. G. Levine, *Ibid.*, **94**, 3631 (1972); (d) M. Boch, T. Korth, J. M. Nelke, D. Pike, H. Radunz, and E. Winterfeldt, *Chem. Ber.*, **105**, 2126 (1972); (e) C. Tang and H. Rapoport, *J. Amer. Chem.* Soc., 94, 8615 (1972); (f) T. Sugasawa, T. Toyoda, and K. Sasakura, Tetrahedron Lett, 5109 (1972); (g) A. I. Meyers, R. L. Nolen, E. W. Collington, T. A. Narwid, and R. C. Strickland, *J. Org. Chem.*, **38**, 1974 (1973); (h) A. S. Kende, T. J. Bentley, R. W. Draper, J. K. Jenkins, M. Joyeux, and I. Kubo, *Tetrahedron Lett.*, 1307 (1973); (l) M. Shamma, D. A. Smithers, and V. St. Georgiev, *Tetrahedron*, **29**, 1949 (1973). (6) M. L. Rueppel and H. Rapoport, *J. Amer. Chem. Soc.*, **94**, 3877 (1972);
- D. L. Lee, C. J. Morrow, and H. Rapoport, J. Org. Chem., 39, 893 (1974).
- M. Freifelder, J. Org. Chem., 28, 1135 (1963).
- (8) S. de Groot and J. Strating, Recl. Trav. Chim. Pays-Bas, 80, 944 (1961).
 (9) G. R. Clemo and G. R. Ramage, J. Chem. Soc., 2969 (1932).
- (10) M. Ferles, Collect. Czech. Chem. Commun., 29, 2323 (1964)
- (11) Using the numbering system proposed by M. Shamma, Experientia, 24, 107 (1968).
- (12) C. R. Costin, C. J. Morrow, and H. Rapoport, manuscript in preparation.
- (13) H. Meerwein, W. Florian, N. Schon, and G. Stopp, *Justus Liebigs Ann. Chem.*, **641**, 1 (1961); A. E. Wick, D. Felix, K. Steen, and A. Eschenmoser, Helv. Chim. Acta, 47, 2425 (1964).
- (14) D. J. Cook, R. E. Bowen, P. Sorter, and E. Daniels, J. Org. Chem., 26, 4949 (1961).
- (15) C. J. Morrow and H. Rapoport, J. Org. Chem., 39, 2116 (1974).
- (16) L. Syper, *Tetrahedron Lett.*, 4193 (1967).
 (17) D. G. Lee, "Oxidation I," R. L. Augustine, Ed., Marcel Dekker, New York, N. Y., 1969, p 30.
- (18) R. E. Partch, J. Amer. Chem. Soc., 89, 3662 (1967).
 (19) H. J. Dauben, Jr., L. R. Honnen, and K. M. Harmon, J. Org. Chem., 25, 1442 (1960).
- (20) J. J. Plattner, R. D. Gless, G. K. Cooper, and H. Rapoport, J. Org. Chem., 39, 303 (1974)
- (21) L. F. Fieser, J. Amer. Chem. Soc., 76, 1945 (1954).
- (22) W. F. J. Huurdeman and H. Wynberg, Tetrahedron Lett., 3449 (1971), and references therein
- (23) E. J. Corey and B. W. Erickson, J. Org. Chem., 36, 3553 (1971)
- (a) D. W. Emerson and H. Wynberg, *Tetrahedron Lett.*, 3445 (1971); (b) W. Huurdeman, H. Wynberg, and D. W. Emerson, *Syn. Commun.*, 2, 7 (1972).
- (25) M. Fetizon and M. Jurion, J. Chem. Soc., Chem. Commun., 382 (1972).
- (26) T. Oishi, K. Kamomoto, and Y. Ban, Tetrahedron Lett., 1085 (1972).
- (27) R. F. Borch, J. Amer. Chem. Soc., 90, 5303 (1968)
- (28) K. Bowden, I. M. Heilbron, E.R.H. Jones, and B.C.L. Weedon, J. Chem. Soc., 39 (1946).
- (29) J. R. Holum, J. Org. Chem., 26, 4814 (1961).
- (30) R. E. Partch, Tetrahedron Lett., 3071 (1964).
- (31) H. Nakata, Tetrahedron, 19, 1959 (1963).
- (32) J. D. Albright and L. Goldman, J. Amer. Chem. Soc., 87, 4214 (1965). (33) K. K. Pfitzner and J. C. Moffatt, J. Amer. Chem. Soc., 85, 3027 (1963).
- (34) For reviews see (a) C. Hollins, "Synthesis of Nitrogen Ring Compounds," Ernst Benn, London, 1924, pp 283–286; (b) R. C. Elderfield, Heterocycl. Compounds, 4, 45, 209 (1952); (c) R. H. Manske, Chem. Rev., 30, 113 (1942)
- "Organic Syntheses," Collect. Vol. III, Wiley, New York, N. Y., 1955, p (35)56.
- (36) T. K. Liao, W. H. Nyberg, and C. C. Chang, J. Heterocycl. Chem., 8, 373
- (37) Obtained from young (90 day) C. acuminata plants by Dr. G. Sherlha. These plants were grown from seeds kindly provided by Mr. R. L. Smith and Dr. R. Perdue of the U.S. Department of Agriculture.
- (38) Solvent evaporations were carried out in vacuo using a Berkeley rotary evaporator. All melting points are uncorrected. Infrared spectra were measured in CHCl3, ultraviolet spectra were measured in 95% ethanol, and nuclear magnetic resonance spectra were taken in CDCI3 (with internal TMS; unless otherwise noted. Gas chromatography was performed on a 0.25 in. \times 10 ft column packed with 5 % SE30 on Chromosorb W, AW-DMCS, and an He flow rate of 100 ml/min, and mass spectra were obtained on CED 103 and 110B instruments. Elemental analyses were performed by the Analytical Laboratory, Department of Chemistry, University of California, Berkeley, acceptable values for C, H and N were obtained for all new compounds.